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CHAPTER 1

The Bispectrum in Multiple Perspectives

1-1 Intuitive Understanding of the Bispectrum is Possible.

The bispectrum is a potentially valuable tool for analyzing any nonlinear
process. Moreover, it has been applied to a wide variety of nonlinear problems in
numerous disciplines. [1.1-1] However, only recently has it gained a substantial
measure of popularity.

There are at least four possible reasons as to why the bispectrum is only
now coming into its own. First, the bispectrum is computationally relatively
expensive. Second, the additional knowledge which the bispectrum supplies may
be too limited to justify the extra effort required. Third, physical and intuitive
understanding of the bispectrum are not widespread. Fourth, the mathematics
of the bispectrum are sometimes considered excessively complicated.

The computational expense of the bispectrum is no longer a significant
problem as powerful machines have become commonplace. The impact of the

second reason is rather difficult to assess: it is true that many investigations
do not require the additional insight afforded by the bispectrum and further, in
many cases, this additional information is small. However, it is not easy to know
in advance that the information gained will or will not be of value. Moreover,

in certain circumstances any information may be of such importance that the
possibility of its acquisition should not be ruled out at the outset. Finally, the
literature of the applied bispectrum demonstrates its usefulness - at least to the a
specific problems studied.

This report focuses on the third and fourth impediments to the more
widespread use of the bispectrum: lack of physical, intuitive and mathematical
understanding of the bispectrum.

The remainder of this chapter will attempt to foster the reader's intuitive
and physical understanding of the bispectrum by presenting the bispectrumn in J2 %

different perspectives. The hope is that of the following assortment of ways of

1 P .
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regarding the bispectrum, at least one will "make sense" to the reader. More I

optimistically, these viewpoints will reinforce one another to provide a satisfactory
intuitive picture. These sections do not contain detailed mathematics and the
reader is encouraged to avoid any perspective which seems unnatural or unduly
complicated. For this chapter, no results are proved and the mathematics are
partially ornamental (and should be studied only if helpful). (Proofs can be found
in the references, if desired.) However, more mathematical detail is available in
the following chapters.

The basic mathematics of the bispectrum is described in general in Chap-
ter 2 and a specific model designed to reinforce this mathematical understanding
is presented in Chapter 3. Practical considerations such as how to estimate the
bispectrum of a time series are dealt with in Chapter 4. (Part of the purpose of
this report is to make the bispectrum a more useful tool, so such considerations
need to be included.) The fifth chapter presents a detailed worked-out example
and uses the model presented in Chapter 3 and the statistical methods of Chapter
4. The final chapter presents a summary of the report and an appendix presents
a catalog of time series with corresponding bispectra.

The bispectrum comes in many varieties - deterministic or stochastic,
discrete or continuous time, and with or without the assumption of stationarity.
The bulk of the literature considers the stationary stochastic case and this report
shall dwell primarily on this case as well. Moreover, time shall in general be taken
to be continuous.

1-2 Bispectrum =- Double Fourier Transform of Third Order Cumu- e

lant (Definition).

The power spectrum P(w) of a continuous time, stationary stochastic
time series x(t) is usually defined as the Fourier transform of the second-order
covariance function c2(r). Explicitly one has

c2(r) = (x(t) x(t + r)) (1-2.1)

and '

P(w) = c 2 (r)e -"w dT, (1-2.2)

where the angle brackets denote ensemble average and this average is independent
of the time t because of the assumed stationarity.

The bispectrum B(wj, w2) is defined by analogy to the power spectrum
(1.2-1]. It is the (double) Fourier transform of the third-order covariance function
C3(7r1, 7-2).

rS
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Explicitly, , ;~~
c3(r1,r 2) = (x(t)x(t + rj)x(t + r2)), and (1-2.3)

BE t, - J - c((r1, 2)e - ' ( " + "2 ) drldr2. (1-2.4)

What kind of insight does the definition provide into the interpretation of
the bispectrum? Unfortunately, precious little seems to be the answer. Features in
the bispectrum correspond to effects of (triple) correlation in the original signal.
It is clear that the bispectrum is zero if there is no triple correlation. Using one's
intuition about the relationship between time and frequency domain quantities,
it is clear that a "spiky" bispectrum implies a rather "flat" triple correlation and
therefore a time series possessing intervals of slow change. Inversely, a repetitious
series of spikes in the time domain may be expected to correspond to flatter peaks
in the bispectrum. Beyond this much, the definition seems not to provide aid to
the intuition.

1-3 Bispectrum = Expectation of Product of Interacting Frequency
Components.

If one transforms the original signal x(t) into the frequency domain by
defining i(w) such that

x(t= ( i , (1-3.1)

then it is well-known (and easy to prove) that the power spectrum can be written
directly in terms of the frequency domain quantities

P(w) = (i(w) i(-w)). (1-3.2)

Again the angle brackets denote ensemble average. The fact that the two fre-
quencies w and -w sum to zero is a direct consequence of stationarity. It is easy
to extend the proof of the above formula to apply to the bispectrum. -..-_ , S

One finds that

B(wj, w 2 ) = I(wI) -(w 2 ) i(-wj - w 2) ) (1-3.3)

The fact that the three frequencies w, w2 , and -w 1 - w2 sum to zero is a direct
consequence of stationarity.

This form of the bispectrum is somewhat helpful to the intuition. The- %
bispectrum can only be nonzero at a particular pair of frequencies (w], w2 ) if the

% %
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Figure 1-1 LOCALIZATION VIA CROSS-SPECTRUM.

frequency component at the sum of these frequencies (P(wt + w2)) is statistically

dependent on the product ("(wI) i(w 2)) of these frequency components. That is,

the two original frequencies must couple through their sum term. Moreover this is

the only (three-wave) coupling possible for stationary time series. (The previous

statement is true provided the time series is continuous-time, as has been assumed

so far. For a discrete time series it is only necessary for the three frequencies to

sum to zero modulo 27r.)
Thus the bispectrum measures coupling between frequencies or, equiv-

alently, it measures a specific phase relation between frequency components. If

there was no such relationship between the phases then the expectation above

would vanish.

1-4 Bispectrum = Cross-Spectrum of Frequency Components (Mac-
Donald's Filter Interpretation).

In an interesting MITRE company report [1.4-2] devoted to the bi-

spectrum, Munk discusses the possibility of using the bispectrum to localize a

target. This possibility arises because of the following interesting analogy.

Currently cross-spectral analysis is frequently used for localization, as

shown in Figure 1-1. One has two detectors and consequently two signals. These

signals can be crosscorrelated and analyzed to determine phase differences. (The

cross-spectrum can be computed by either of two inethods. One can compute

the crosscorrelation first and then Fourier transform or one can compute the

transforms first and then multiply.) In bispectral analysis, there is only one . \

- •* *hp r -. h . - - "'
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signal at the outset, but it is separated into two frequency components. Munk
suggests that one can then heterodyne both components to zero frequency and S
finally crosscorrelate. (See Figure 1-2.)

fA,

xAQ)) -O

x^ f(t)

PASS-BAND HETERODYNE

Figure 1-2 LOCALIZATION VIA BISPECTRUM (MUNK'S VERSION). _

Here one can see that bispectral analysis looks at just that information
which ordinary spectral analysis throws away: inter-frequency phase information.
(The "relative phase" or "inter-frequency phase" of the two frequencies f, and f2

is generally defined as the phase part of the bispectrum.)
MacDonald [1.4-3] provides a formal treatment of the above argument.

A condensed version of his argument is presented below and may be skipped
if desired. MacDonald's treatment actually leads to the representation shown
in Figure 1-3 which is slightly different from Munk's version. In fact, there is
no explicit treatment of the bispectrum which corresponds exactly to Munk's
description and it would be interesting to try to construct one. (This might make
a valuable mini-research project for the reader.) u"p :

Start with a continuous time, stationary, ergodic, zero mean, stochastic
time series x(t). Imagine that one can construct ideal passband filters with center
frequency f, and bandwidth A. If x(t) is input to the passband filter, denote the .
filter output by (t). Now take the input time series x(t) and "fan out" into three
copies. Send one copy into a passband filter centered at fl. Send another copy "' *.-
into a nassband filter centered at f2. Send the final copy into a passband filter
centered at f f + f2. Let all three filters have bandwidth A. Now multiply the
outputs of all three filters together. In a sense, the fact that the third frequency is
the sum of the other two allows one to think of this multiplication as heterodyning
both signals to zero and crosscorrelating in the same step. (This is the part that

outputs,.- * of Valltrefites toet er. In sns, th at htth hr feunc sq
*** t he S su of te othr tw llw one to hin of thi mutpiaina htrdnn €,h' '",,

botIsinal tozr ndcosore*igintesm se.(hs stepatta .. "..,
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DETECTORr

x( . f2; X UT U
1 IAVERAGE 

R

PASS-BAND MULTIPLIER '- .'

Figure 1-3 LOCALIZATION VIA BISPECTRUM (MACDONALD'S VERSION). S

needs work to give a completely explicit meaning to Munk's interpretation.) Take
the output of the multiplier and time'average. Finally, multiply the output of the
"time'averager"by 2/(3A 2 ). The result is the real part of the bispectrum of x(t)
evaluated at fl, f2. If the imaginary part is desired, it is only necessary to change
the f 3 passband filter to include a uniform 7r/2 phase shift.

This condensed version of MacDonald's treatment may be viewed as a
signal processing or analog explanation of the bispectrum (in contrast to the
digital explanation of 1.3).

1-5 Bispectrum = Nonlinear Coupling of Product of Interacting Fre-
quency Components.

This -ction shall relate the bispectrum to two models involving nonlin-
ear coupling of waves. The first model consists of a simple quadratic nonlinearity.
The second involves a physically realistic nonlinear evolution equation. Both
models are presented by E. J. Powers and his co-authors [1.5-1, 1.5-2].

Establishing a suitable framework for developing both applications is first
on the agenda. Some noisy quantity of interest (call it 0 and for simplicity take it
to be scalar) propagates in some uniform medium. For simplicity of exposition .
will be assumed to vary significantly in only one dimension, e.g., the x direction.
Following the usual procedure, Fourier decomposition of 0 is called for. Write

O (x, t) 0--,(x )exp [ik(w )x - iw t]. (1-5.1)

The quantity k(w) is the frequency dependent wave number and characterizes the "

medium under consideration. Since is a random quantity, so is the ,jx).

%~ %

No 
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Interest centers in both models on the behavior in time of the values of
€ at one particular point xP in space, the probe position. To expedite matters, .

define y(t) to equal O(xp, t). If one sets

Y(w) - ¢,,expik(w)xP], (1-5.2)

then Y and y form a Fourier transform pair.
The power spectrum of y, as usual, is

P(w) = (Y(W) Y*(W)) (1-5.3)

and the bispectrum is
S

B(w,,wL2 ) = (Y(w,)Y(w-2 )Y*(w, + w2 )). (1-5.4)

Both models will be simplified in that only three waves will be considered.
These waves will be assigned frequencies w, w1 , and w2 , where w = w1 + W2.

With the framework for both models established, one can now consider
the first model [1.5-1]. In this model, the nonlinearity is taken to be of the simple
form

Y(w) = AY(w,)Y(w 2 ) + Y'. (1-5.5)

Here Y' is some quantity which contributes to Y(w) but is statistically indepen-
dent of the coupling term. A represents the coupling constant.

Computing the power spectrum at w, one easily' finds

P(w) = 1AI1(IY(wi) Y(w2 )12 ) + (IY'1 2 ). (1-5.6)

The first term represents the contribution of the wave-wave coupling interaction
and the second includes everything else.

It is just as easy 2 f to compute the bispectrum at w1 , w2:

B(w,,W2) = A*(IY(wi) Y(w2)2 ). (1-5.7) '"'

One sees immediately that the bispectrum conveys information only about the
coupling interaction. In fact, one could partially normalize the bispectrum so as
to get the coupling coefficient from experimental data as follows:

B. *~- (w1,LI2

A B(ww) (1-5.8)A = (11'(Wi) Y(W2)l "".'-..

'Proving this takes only a few lines and may be a useful exercise.
2This formula is also very easy to derive and might serve well as the reader's first "bispectral

computation".,-

p..'. .r, _
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In the second model [1.5-21, a realistic evolution equation is assumed,

= V¢,, 0,exp(ibkx), (1-5.9)

with frequency matching (w = w1 +w 2), possible mismatch in wave number (char-
acterized by = k, , +k2-k,), and wave-wave coupling (with coupling coefficient
V).

This type of equation is commonly found in nonlinear optics and in
plasma physics. It shows how a wave gains or loses energy due to interactions
with waves of different frequencies as it propagates in space.

As implied earlier, one should properly

" make the right side an integral over all w, (taking w2 = w - WI),

" let V be dependent on W, wi, and w2, and

• take this equation to be true for all w.

It will be easier (as above) to interpret the above equation as true for
some fixed w and to assume that for the wave at this frequency w there is one
pair of frequencies (w and w2) that dominates the integral. In particular the
frequency dependence of V can be omitted.

In terms of the quantities of experimental interest, the above equation
becomes

Ox-V Y, Y," + ik(Ow(w). (1-5.10)

It is a simple exercise (left to the reader) to take the above equation and
derive

OP = VB(,,W2) + V*B*(w,,W 2). (1-5.11)

One should now follow Powers and his co-authors and re-write the above
equation in terms of strictly real quantities VR, VI, BR, and B1 , where

2V=VR +iV, and B=BR+iBJ. (1-5.12)

This gives the wonderful equation •

Ox = VRBR(WI,W2) + VjBj(w,w 2 ). (1-5.13)

This equation demonstrates that power is put into the wave at frequency
w (as one advances in the x direction) due to coupling with the waves at w, and
w2. Further, the real part of the bispectrum gives the amount of that coupling
due to the real part of the coupling coefficient V (and similarly for the imaginary
part). %

S
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1-6 Bispectrum - Rate of Transfer of Energy.

Since the bispectrum measures the amount of coupling between two fre-
quencies and since this coupling governs the rate at which energy is exchanged
between these frequencies, it follows that the bispectrum provides information
regarding how energy moves from one frequency range to another. This has been
demonstrated in the previous section. This information is of particular interest in
at least two disciplines: the study of turbulence and the study of nuclear fusion
in plasmas.

This section shall present a brief exposition of the theory of homogeneous
turbulence. Much of the experimental bispectral literature deals with this problem
because the bispectrum is so intimately related to the quantities of experimental S
and theoretical interest. If one did not know better, one might even suspect that
this entire subject was invented to provide an application for bispectra. In a
sense, the discussion in this section is the dual of the previous section in that
here one considers energy transfer in time rather than in space and that here the
bispectrum is extended to functions of space rather than time. (The reader should .v,.
feel free to skim the remainder of this section. He/she is encouraged not to skip
it entirely.)

In homogeneous turbulence, one is concerned with an infinite body of
fluid and its random motions [1.6-1]. These motions are taken to be independent
of position on average, and hence homogeneous. The fluid is taken to be incom-
pressible and can be characterized by its (uniform, i.e., position-independent)
density p and its (uniform) kinematic viscosity v. This is of course a vast simplifi-
cation of typical situations. However, even this simple problem evades mathemat-
ical solution. Moreover, one can experimentally produce a good approximation
to homogeneous turbulence by passing a fluid perpendicularly through an array •
of metal bars ("grid-generated turbulence") [1.6-1, 1.6-21.

The state of the fluid is specified by providing its velocity V and pressure
p as functions of time t and space Y. The fluid motion is assumed to be random
so that one is primarily concerned with expectations and especially correlations
in time and/or in space. For example, one may desire (v,(YF, t)v,(Y2 , t)vt(y 3 , t))
or (V-(!,t1)V.(,t2)).

The motion of the fluid is governed by the Navier-Stokes equation,

Di' V l p + vV 26,(1.1

and is subject to the incompressibility constraint

V. J 0. (1-6.2)

S

.< ..- ~ .~-



10

The operator D is the kinematic derivative and is defined as

a
D t- + 6. - . (1-6.3)

The requirement of homogeneity (averages are independent of position) supplies
the boundary conditions (in an unusual, though pleasant, fashion).

Turbulence is inherently a "multi-scale" phenomenon. It is caused by
interaction of phenomena which take place on very different length scales (from
clearly visible to microscopic). Thus a decomposition of the motion of the fluid
velocity in terms of motions at different length scales is suggested. One is led to
write

6(1,t 0 ]exp(ik. - )d (k, t). (1-6.4)

This is a Cramer or Fourier-Stieltjes representation of the velocity field.
The mathematics (which will be dealt with in Chapter 3) is not important here:
all that is required is the understanding that the velocity is written in terms of
motions which are on varied length scales. The vector k specifies the scale of
the motion - the greater the magnitude of k the smaller the scale (wavelength).
The integral is taken over all possible scales and is evaluated at a particular time.
This makes it possible to ask questions such as what portion of the total energy of
the fluid motion is due to motions on a particular length scale and how does this
fraction evolve with time. In other words, one can trace the transfer of energy in
time from one spatial frequency range to another.

It must be stressed that the interest is in spatial frequencies rather than
temporal ones. One is concerned primarily with velocity as a function of position
at a particular time rather than with velocity at a particular place as a function
of time. However, this fact makes no difference to the mathematics. In par-
ticular, the homogeneity assumption is the spatial analog of the requirement of
stationarity, so the "space" series have the usual properties of time series. Fourier
transforming the Navier-Stokes equation and simplifying gives an equation for the
dynamics of spectral energy transfer,

t)] = J , t)dk' vk 2 i2(k, t0. (1-6.5)

In this equation, 4,n(k, t) is the spectral energy density (at a particular
time), T is the energy transfer function, and k is the magnitude of k. If T is
known then one can say how energy in a particular (spatial) frequency range _
changes in time due to transfer from motions at other (spatial) frequencies.

1
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The spectral energy density - is defined in terms of the velocity compo-
nents as

J(k, t)dkldk2dk3 = (di(k, t)dj(k, t)). (1-6.6)

As one might suspect from the introduction to this section, the energy trans-
fer function T is simply expressed in terms of the (spatial) bispectrum3 of the
velocity-field:

T(k, P,t) = -k* Im[A(k, k')]. (1-6.7)

This equation states that the net energy transfer per unit time from frequencies
in the vicinity of ' to those near k is proportional to the imaginary part of the
bispectrum of the velocity field. Thus, as stated earlier, the bispectrum tells one

how energy moves in frequency space.

1-7 Bispectrum = Decomposition of Cube of Time Series.

Defining the power spectrum and the bispectrum as in section 1.2, one
gets the Parseval relation

(y2 (t)) = 00 (w)dw, (1-7.1)

which shows that the power spectrum represents the contribution to the total

energy (or second moment) of a particular frequency range. One also finds the
relation

whic shw that 0 L 1 0B(w 1, L02) dw IdW2 ,(172

which shows that the bispectrum represents the contribution to the (unnormal-
ized) skewness, or third moment, of a particular pair of frequencies.

This result demonstrates how deeply the analogy between the second and
third order quantities persists and modestly contributes to the reader's insight
into the interpretation of the bispectrum. It is difficult to attach much physical

3 For completeness, the "vector" bispectrum in the equation above is defined as .

) f Z') exp(-i[k 5 + k' i']) d&d '

where the "vector" triple correlation in turn is

V, s) J(Z) Vn~ + ni') + .).

%~w
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or mathematical importance to this result (which is why it has been relegated to
the end of this chapter).

1-8 The Bispectrum Can Be Interpreted in a Variety of Ways.

This introductory chapter has presented quite a number of ways of re-
garding the bispectrum. It presents, in fact, a rather broad survey of the bispec-
tral literature. With luck, at least one or two of these perspectives may benefit
the reader. Some of these examples (particularly the homogeneous turbulence
example) may be overly technical: if so, ignore them! It is certainly true that
understanding these specific examples is not necessary in order to understand the
bispectrum.

The remainder of this report is more concrete. The following chapter
presents some of the fundamental mathematics of the bispectrum, including a
derivation of the usually mysterious "fundamental domain". From this point on,
all mathematics will either be worked out in detail or, at least, stated carefully
and precisely.

6

6

6
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CHAPTER 2

Mathematical Properties of the Bispectrum

2-1 The Principal Domain of a Bispectrum is a Consequence of Sta-
tionarity, "Reality", and Symmetries.

This section will involve discrete time series solely. The Fourier trans-
form is in this case a continuous function of frequency which is 2r periodic. Given
a real, stationary third-order correlation function c3 (n 1, n 2, n 3 ), the principal do-
main of the bispectrum is as shown in Figure 2-1. This fundamental domain
consists of an isosceles triangular subset and an odd or extra triangle.

The shape of this principal domain is a consequence of stationarity, re-
ality, discrete time, and symmetry properties. This shall be worked out in the
next few pages.

Recall that c3 is defined as

c3 (n1 , n 2 , n 3 ) = (x(t + nj)x(t + n 2)x(t + n 3 )). (2-1.1)

First, the discrete time nature of c3 instructs one to represent the Fourier
transform as

= 1 00

f(A 1 , A2 , A3 ) c3(n,n 2,n 3) exp[-i(Ain1 + A2n2 + A\n3 )]
( 2 i nI A

2 .f3 -o (2-1.2) '

where -r < A,, A2, A3 < ir [2-1].
Second, one imposes stationarity on c3; i.e., one requires that

c3 (n1,n 2 ,n 3 ) = c3 (n, - n 3, n2 - n 3 , O) = C 3 (n1 - n3 , n. - n - 3). (2-1.3)

lere the last equality serves as definition of the usual form for the stationary
bicovariance function. For the sake of completeness. note that this function obeys

13
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the symmetries

C 3 (n 1 ,n 2) = C3(n2 ,n) =

C3(-njn,-nj) = C 3(nj - n2 , (2-1.4)

But, more relevantly, this stationarity implies that f3 is nonzero only
when

(\ 1 + A2 + A3) mod 27r = 0. (2-1.5)

One can now write the bispectrum as

B(wi,w 2 ) = (X(w)X(w2)X(w 3)), (2-1.6)

where
w3 = 2r n - w, - w 2, (2-1.7)

and the value of n is restricted to 0 and 1 when wl, w2, and w3 are confined to
the range -ir to 7r. (The value n = -1 is also permissible but it gives redundant
information and will be eliminated.)

At first sight, one might expect that, at least for some wl, w2, there may
be two possible values of w3 (one corresponding to n = 0, the other to n = 1). In
fact, for any specified w, and w2 there is a unique n as well as a unique w3.

It is clear that the value of the bispectrum is not changed if any pair of
frequencies is interchanged. This observation provides the following symmetries

B (w 1 ,W2) = B(W2 WO),

B(wI,w 2) = B(w3, wi), and

B(wI,w 2 ) = B(w 3,w 2 ), (2-1.8)

which are depicted in Figure 2-2.
For n = 0, these equations become

B(wjL,w2) = B(-wi - w 2,w) and

B(wj,w 2) = B(-wi - w 2, w 2), (2-1.9)

as shown in Figure 2-3.

For n = 1, these relationships are

B(wj,W 2) = B(27r - w, -w 2 ,w) and (2-1.10)

B(w 1 ,w 2) = B(27r - - W2 ,W 2 ), (2-1.11)

%621
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Figure 2-2 B(w,,W2 ) =B(W2,Wl).

AS-88-210

7c

Figure 2-3 B(w,,W2 ) B(- W2,W2).

AS-88-21 I



17

as shown in Figures 2-4 and 2-5.
If the original time series is assumed to be real the bispectrum possesses

the additional symmetry

B(w1 , W2) = [B(-wj, -w 2 )]*, (2-1.12)

where the asterisk denotes complex conjugation. This is shown in Figure 2-6.

Using these symmetries, a principal domain of the bispectrum can be ,-.

identified. From the conjugation symmetry, it follows that the regions of the (w1, .%

w2 ) plane shown in Figure 2-6 are equivalent. Thus it is only necessary to consider
the upper half of the plane (positive w2). From the second n = 0 equation, the
two triangular regions shown in Figure 2-3 are equivalent. Combining the second
n = 0 equation with the conjugation symmetry and the w, + w2 symmetry, it can
be seen that the two remaining triangular regions are also equivalent so that it is
only necessary to consider positive values of both w, and W2 . The w +-+ W2 sym-
metry applied to the positive (wi, w2) quadrant results in the equivalence of the
two octants shown in Figure 2-2. The first n = 1 equation implies that the two
triangles in Figure 2-4 are equivalent, while the second n = 1 equation implies
that the two triangles in Figure 2-5 are equivalent. No other symmetry relation-
ships can be applied to further eliminate equivalent regions in the bispectrum.
Thus the principal domain is the triangular region shown in Figure 2-1.

2-2 For a Properly Sampled Continuous Time Signal, the "Extra"
Triangle is "Forbidden".

Data processing with digital computers necessitates dealing with discrete
(sampled) representations of signals. Thus the bulk of this report emphasizes
the discrete time case. However, time (so far as one knows) is fundamentally
continuous. Moreover, the continuous nature of time makes itself felt even in
discrete time signal processing. Specifically, if (1) the discrete time model arises
from sampling an underlying continuous time process and (2) this continuous time
process is bandlimited and (3) the sampling rate is sufficient to avoid aliasing,
then the discrete bispectrum is nonzero only in the isosceles triangular subset ofthe principal domain. " 5"

This result shall be shown below. N<
0
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A "bridge" between the discrete time bispectrum, b(A1, A2, .'), and the s
continuous time bispectrum, b(w 1 , W2, w3), is given in Brillinger and Rosenblatt
[2-2].

A 2 , A 3) = b(w , W2 , W3 ) (2-2.1)

where A + A2 + A3 = 0 (mod2ir), and w1 + W2 + W3 = 0 with w, = Ai + 2irjj and
ji is an integer ( and i = 1,2, or 3). (In this stction, the tilde" is used to denote r.

discrete time.) :-

The bispectra are written with the third argument explicit for simplicity
of exposition. Notice that the arguments of b must sum to zero wheieas the

arguments of b can be any integral multiple of 27r. Also notice that this sum is
consistent with the replication phenomenon familiar in sampled systems. That
is, the continuous-time spectrum is replicated an infinite number of times over a
three-dimensional lattice with side length 27r.

Now assume that the underlying system is bandlimited. Further assume
that the system has been sampled appropriately (above the Nyquist frequency).
Then 7r corresponds to the Nyquist frequency or above and one may state that

b(wj,w 2,w3 ) = 0, if 1wI1,1w2 1,or 1W31 > r. (2-2.2)

Now the argument is simple. Choose a point in the ,dd triangle. This
implies that

A, + A2 + A3 = 27r

and there is no reason not to take

-ir <A i <ir.

All W, W2., w3 which correspond to this set of A are included in the equation

0 = wL + W2 + w 3 = AI + A2 + A3 + 27r (j + J2 + j 3), (2-2.3)

where the ji are all integers (possibly zero). It is immediately clear tha'. one has S

I + J2 + J3 -1. (2-2.4)

Thus at least one of the j, cannot be zero. The simplest case is jt = -1 %.

and '2 and j3 0. This leads to :'- ?

L -) = A-21r

w2 = A 2
W3= A3 , (2-2.5)

.4. J%S- "%
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so w, must lie outside of the Nyquist range. But this is a contradiction and shows I Z

that a properly sampled signal cannot lead to a nonzero bispectrum in the odd '.
triangle.

Although this result is not surprising, the relevant literature has been
ambivalent regarding its validity. Part of the reason for skepticism is the existence
of data taken under conditions where aliasing is very unlikely but which shows
unmistakable peaks in the forbidden triangle. The author's conclusion is that the ,.
signals involved must have been non-stationary, and that it would be desirable
to pursue an understanding of the bispectrum in the non-stationary case. (The
only mention of this extension in the literature that the author is aware of is to
a problem involving speech recognition.)

2-3 The Most Basic Mathematical Properties of the Bispectrum are
those which Determine the Fundamental Domain.

The elementary properties of the bispectrum, namely its symmetries and
its relation to a stationary time series, are those properties which determine the
fundamental domain. As shown here, however, this derivation requires working
out the combined implications of all of these properties simultaneously. The
treatment here is perhaps one of the most explicit available.

The next section shall extend the mathematical study of the bispectrum.
The study will be done in the context of a concrete model which can be used to re-
produce any possible bispectrum. This model should provide the reader with both e
insight and some useful manipulative techniques for studying the bispectrum.,',

r- -' .
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CHAPTER 3

The Universal Bispectrum Model

3-1 The Universal Bispectrum Model is the Simplest Model that can
Reproduce any Possible Bispectrum.

This chapter thoroughly explores a particular (discrete) time series model
which can reproduce the bispectrum of any possible time series. This model is
not motivated by physical or intuitive considerations (unfortunately); however, it 0
does provide a tool for learning useful mathematics, for testing software, and for .
illustrating and exploring the properties of the bispectrum.

It may be wise to start with the corresponding model for the power ' .-
spectrum. Statisticians are very familiar with the time series model 0

00k
x(t) = f(t) + E g(m)C(t - m). (3-1.1)

rn=O

This model represents an (infinite order) moving average (MA) process. Here
c(t) is a random variable (taken to be normally distributed, for simplicity) and
values of c at different times are statistically independent. In standard notation,
the c(t) = N(O, U 2 ) and are "independently, identically distributed" (i.i.d.). The k
e(t) can be regarded as random "inputs" (or innovations). The coefficients (or
weights) g(m) can be chosen such that the time series x(t) has any desired power
spectrum. So, this model may be considered to be a universal power spectrum
model. (There are other models with this property.)

The universal bispectrum model is a simple generalization of the above.
A convenient form is

X(t) = f(t) + 71(t) + g(m, n)E(t - n)77(t - m. - n), (3-1.2)
rnMO
n=O

where now the model contains two independent random processes. That is, for %
all values of t, c(t) and 7 (t) = N(O, 0,) are i.i.d. It may suffice for now to think of

22
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the universal bispectrum model as a sort of infinite MA model. The g(tn, n)c(t)
can be regarded as random MA weights and the q(t) can be regarded as the
innovations. The model is completely specified by a and the weights 9. There
are other models which can produce any possible bispectrum, but the above is
the simplest to use.

In an initial reading, the remainder of this chapter can be omitted. Its
primary purpose is to document the universal bispectrum model for future use.
Necessarily it is very mathematical. However the mathematics have been spelled
out in perhaps painful detail so as to be appropriate for an introduction to the bi-
spectrum. The hope is that this chapter can serve to make the earlier discussions
more concrete and thus enhance the reader's ability to deal with the bispectrum
productively. The remaining sections of this chapter are organized as follows:
the time domain properties of this model - the second-order (3.2) and third-
order(3.3) cumulants are derived; these functions are then Fourier transformed
to get the power spectrum (3.4) and the bispectrum (3.5); the inverse problem
is examined (3.6); the model is reformulated and studied in the frequency do-
main(3.7,8); and finally, speculations on ways in which this model may arise in
practice (3.9) are presented.

3-2 The Second-order Cumulant for the Universal Bispectrum Model
is Rather Messy and Not Very Informative.

First on the agenda is to obtain the second-order cumulant function:

C2(r) (x(t) x(t +r))

= / ~~ijqt)+ Eg(m,n)c(t- m)7(t-m-n)]
m .n

+ E g(m',n')(t+r -m')77(t+r-m' -n')]) (3-2.1)

((t)(t + r) + +(t) 7(tr)

+ E g(m, n) g(mn',P')
m.,' n

M(t C)(t + r - m') q(t - m - n) 7(t + r -m'-,'. ,,

So far we have just substituted for x and used the fact that E and r7 are independent
variables. Next we shall use the fact that c(t) is independent of all c(t') for t' -# t
(and similarly for yi). The expectation of the c(t)6(t + r) term becomes o2 6r (and

S,
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so does the corresponding term for 7). Here 6, is the Kronecker delta function
which is zero except when its argument (r) has the value zero, in which case it
is one. The expectation of the complicated summation also simplifies in so far
as only those terms for which m' = m + r and n' = n contribute. So the final
expression becomes

00

c2(r) = 2a 2 r + 04 E g(m,n)g(m + r,n). (3-2.2)
m n-0

This expression is included more for completeness than for its usefulness. Note
that this formula does have the r +-* -r symmetry of c2(r), but that this symmetry
is not blatantly on display here.

3-3 For the Universal Bispectrum Model, the Third-Order Cumulant
Equals C 4 times the Weight.

The third-order cumulant function is evaluated in a similar fashion (but -
it burns out nicer):

c3(r,s) =- (x(t)x(t + r)x(t + s))) =
1 2 3

([e(t) + q(t) + E g(m,n)E(t - m),q(t - m - n)] (3-3.1)
m~n

A B C

[c(t + r) + 77(t + r) + Z g(m', n')c(t + r - m')7(t + r - m' - n')]
m.n/, },rI Mixi

ii iii

[e(t + s) + (t + s) + , g(rm",n")4(t + s - m")t(t + £ - n" - n))

The above product contains 27 factors. However the single rule that only terms
with an even number of factors of c's and i's will have a non-vanishing expectation S
eliminates all but six terms. These six terms all involve a (double)sum of a product
of a g, two c's, and two 77's. In order for these terms to contribute, the arguments
of the two E's must be at the same time and similarly for the q's. This reduces
each of the six double summations to a single term. These six terms are shown
below using the notation source -- target. The source specifies the particular
combination of three factors which leads to a non-vanishing expectation and the
target denotes the weight g involved in the surviving combination.
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c3(r, s) ( x(t)x(t + r)x(t + s)))

= ( ,Bili -+ g(s, -r)

+ 1Cii - g(r, -s)

+ 2Aiii -- g(s - r, r)

+ 2Ci - g(r - s, s)

+ 3Aii -- g(-r, r - s)

+ 3Bi - g(-s, s - r) ). (3-3.2)

The two c's and q's in these terms contribute a factor of o 4 to the expectation
above, so the final result is

C3 (r, s) = g(s, -r)
+ g(r,-s)

+ g(s - r, r)

+ g(r - s,s)

+ g(-r,r-s) . (3-3.3)

This equation is already much nicer than equation (3-2.2), but it is even
better than it appears. For a specific choice of r and s, in general only one term
will be non-zero in the above sum. For example, if r and s are both positive,
and if r > s, then only the g(r - s, s) term is non-zero. Causality (the fact that
g(r, s) = 0 if r < 0 or s < 0 ) reduces the above sum to one term. Moreover, the
remaining terms are just those that are needed for c3(r, s) to obey the symmetry
requirements of a third-order correlation function. So, in essence, the third-order . .

correlation function c3(r, s) is equal to g(r - s, s), except for a factor of 0A, and
unless g(r - s, s) = 0, in which case one must take the appropriate non-zero
image.

However, things are slightly messier than implied above. If either r or s
is equal to zero, or if r and s are equal to one another, then several terms in the
above sum may simultaneously be non-zero, so that c3(r, s) and g(r - s, s) differ
by a small factor in addition.

I,
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The exact relation, which is equivalent to equation (3-3.3), isr 6g(0, 0) r =0, s= 0
2g(r, 0) r > 0, s = 0

g(r -s, s) r >s, s> 0 W
2g(0,r) r = s,s>0 

g(s - r, r) r >0,s > r

2g(O,s) r = O,s > 0

c 3(r,s) = 4  g(s,-r) r < 0, s > 0 l. (3-3.4)

2g(o,-r) r < 0, s = 0L

g(-s, s- r) r<s,s<0 El
2g(-r,O) r = s,s < 0 E

g(-, r- s) r <O,s<r 10

2g(o,-s) r = o,s < 0

g(r,-s) r>0,s<0 12

The boxed numbers ranging from 0 to 12 refer to Figure 3-1.

This figure presents the r,s plane and slwws how each term above con-
tributes. Each region assigned an odd number corresponds to the line which is
the boundary between the two adjacent wedges. Each region assigned an even I
number represents one of the six primary regions above (except for the region
assigned the number zero, which represents the origin only). Thus, for example,

in region LU c3(r, s) is equal to g(s, -r).

3-4 The Power Spectrum of the Universal Bispectrum Model is Some-
what Informative.

The power spectrum is defined as the Fourier transform of the second-
order cumulant function, so that

f 2( ) c2(r) eP-ir

00 00

- [2a 26,- + a1" g(m, n)g(m + r, n)] - iAr (3-4.1)

MAI
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g(s.-r) 9( l-r -s)

0 I 0
(9 r-s r)

0

Figure 3-1 THE C3 PLANE IN TERMS OF THE WEIGHTS g.
2 0 0

= 2a 2 +or4 'g(m,n) E g(s,n) - ) (s - rn ) .  (3-4.2)

00 00

Therefore, if one defines n(A) -k= - e g(k, n) e -i)k, then

00

A(A) = 2r2 + a'4 E IM1 (A)i2. (3-4.3)
n=O

* S
This result is somewhat helpful in limiting circumstances. In particular,

if the weights are small in comparison with a, the power spectrum will be ap-
proximately flat (independent of frequency) with magnitude 2a 2. In the opposite
limit, the power spectrum will vary as the magnitude of a typical g squared.

This result will also be useful later in determining how to trade off the
parameters (a and the g's) to yield the model with smallest variance for a specified
bispectrum. p'z z %
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3-5 The Bispectrumn of the Universal Bispectrumn Model is Given by
the Frequency Coupling Coefficients.

Remember that the bispectrum is the double Fourier transform of the

third-order correlation function:

b(A1,,A2) = 1: (3-5.1)illr+X28
r.S -00

The following definition is needed in order to re-express b(A1, A2) in terms of the

weights:00

A2) = Z g(r,s) exp[-I(rA + SA2)1.(3.)
XA 1, A2) = -03- .2

The g4 will be referred to as frequency coupling constants for reasons to be made

clear in section 3.6. Substitute for C3 (r, s) using equation (3-3.3). The result is

a sum of six terms. The detailed calculation for the term involving g(r - s, s))

follows. The contribution of this term to the entire bispectrumn will be denoted

10because only g(r - s, s) is non-zero in region E21 thus

6(A0,2) = a' E g(r -s,s) exp[-i(rAi ±SA2)]
T, 00

= 0" E g(r',s) exp[-i'(r'A + s(A1 ±A 2))]
r.3=-00

4 NAj, A, + A2). (3-5.3)

Similarly,

bfWA1,A2) = o4(A 2,A I + A2)

b(A1 ,A2) = a4 A,-,

b(AI,A 2) =a 44( -At - A2, -A,)

bEM(AI,A2) = cr4 (A,-A2). (3-5.4)

The final result is just the sum of these six terms:

b(A 1, A2) = (A[1,(A1 IA+±A 2) + (A 2,A I±+A2 )

0

* ~ a ~ ~ ~ '/.%
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+ 4(-A 1 - A2,-A 1 ) + 4(-A 1 - A2,-A 2 )]. (3-5.5)

(The reader may have some doubt as to whether this result takes care

of the "boundary" regions I[ IR [i etc., properly. Rest assured that it does.

Notice that includes one-sixth of the contribution from [a and one-half of

mP 3m
the contribution from ElI and [U so that the sum of all six terms does in fact
correctly include the regions which do not explicitly appear above.)

As was the case for the corresponding time domain result, this formula
is much simpler than that for the second-order quantity. Further, it is simpler
than it appears. Originally, the author used the above equation (3-5.5) to base
a presentation of the "inverse" problem of constructing the time domain weights
due to a particular bispectrum. The author currently favors the approach shown
in the next section so that equation (3-5.5) is no longer so important to the
development. Yet it is still of interest to solve the above equation for 4 given b
and the next section shall show how this can be done.

3-6 Inversion of the Model is Easy.

This section will show how to go backwards. That is, given a bispectrum,
the corresponding model coefficients will be determined. For simplicity, it shall be
assumed that the desired bispectrum lies entirely in the interior of the isosceles
triangular subset of the principal domain. This assumption makes exposition
somewhat easier, but it is by no means difficult to redo this section for the general
case.

Given a bispectrum b as assumed above, define bi(wj,w 2 ) to be a 2r
periodic (in wI,w 2), conjugation symmetric function which agrees with b in the
fundamental domain but is zero elsewhere. One can call b, the signature of the
bispectrum. The signature is b stripped of all the symmetries of b except for the
periodicity and the conjugation symmetry. In terms of b1, b can be written

b(w1, w 2) = bj (wj, w 2)

+ b I(W2, L0)%

+ b1(wj, -w - w2) Z..C :1

+ bj( 2 , -w 1 - w2)

+ bl(-w- w2 , w)

+ b (-w I - L02, L12)

I t o
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+ cc. 

This expression shows that b is a symmetrized version of its signature
and has all the correct bispectral symmetries. Thus b, is, as claimed, b "de-
symmetrized". The author derived this equation by starting with the bi(wi,w 2)
piece and applying the bispectral symmetries to get the complete bispectrum. The
assumption that b is non-zero in only the interior of the fundamental domain has
already been used, for otherwise the above sum would overcount contributions on
the boundary. This overcounting problem is, in fact, the reason for the simplifying
assumption.

Assume next that the inverse double Fourier transform of b, together
with the conjugation-symmetric part of b, is known. This double Fourier trans-
form is real and it is defined by

h(rs) b(wui,wL2 ) exp[i(rwi + sw 2)]dwidw2 + c.c. (3-6.1)

where the integration limits are -r to 7r,

It is a routine matter to verify the following table of transforms:

b I(wl, W2 ) 4.h(r, s)

bl(ui,- w L 2 ) -h(r - s, -s)

bI(02, - I- w 2 ) =. h(s - r, -r)

bi-,- W2 , W1) .h(-s, r - s)

bI(-w - w 2, w2 ) => h(-r,s - r), (3-6.2)

where x => y symbolizes the fact that y is the inverse double Fourier transform
of X.

Combining equations (3-6.1), (3-6.3), and the fact that the bispectrum
is the double Fourier transform of the triple correlation gives K
c3(r,s) = h(r,s)+h(s,r)+h(r-s,-s)+h(s-r,-r)+h(-s,r-s)+h(-r,s-r).

(3-6.3)
This is a key result in the inversion of the bispectrum: it expresses the ,_

triple correlation in terms of the transform of the bispectral signature. This ex-
pression displays explicitly all the appropriate symmetries of a triple correlation B
function so that h like the g earlier is a de-symmetrized version of the triple cor- ->
relation. All of this so far in this section is entirely independent of the universal

I
9. 1

, 'e h. .%
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bispectrum model. But now, using the universal bispectrum model, one is essen-
tially done. For given the triple correlation, there is a unique corresponding g.
This g can be obtained by inverting (3-3.4) to get

c3(0,0) r = s = 0

1 c3(r, 0) r > 0, s=0 (3-6.4)
- c3(0,s) r=O, s>O

c 3 (r+ s,s) r,s > 0

Actually the universal bispectrum model permits an even more direct
solution to the inverse problem. It is not necessary to introduce the signature at
all. One just takes the above equation and rewrites it as

1 1 1 1
g(r,s) = 00f{c3(r + s,s)[u(r)u(s) - . u(r)6(s) - 2 6(r)u(s) + - 6(1)6(s)]}

1 ,
= U4 ca(r, s)m(r, s). (3-6.5)

In the first line above, u(r) is the step function (u(r) = 1 for r > 0 and
u(r) = 0 otherwise) and 6(r) is the Kronecker delta function. In the second line
c'(r, s) -- c3(r + s, s) and m(r, s) is the sum of products of 6 and u bracketedabove. N",

If one double Fourier transforms both sides of the above equation, then
the left side will give the 's and the right side will be the convolution of the given
bispectrum with the transform of m. Explicitly, one can write

S01 [c3 *,h(A 1 , A2)] (3-6.6)

with c3(Ai, A2) = b(A, A 2- A,).

The transforms of the step function and the delta function are simple to
get; they are

1%

= 1 - exp(-iA)

2 cot6(A/2) (3-6.7)

* .
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and I
(A) = 1, (3--6.8)

and rh may readily be obtained by appropriately combining the above results.
Writing the above convolution somewhat more explicitly gives

g(,Al, 2 ) = j J( A - coA, - , 1 - W) ,h(w ,c 2 ) dw, dW 2. (3-6.9)

The above formula expresses the 's directly in terms of the given bi-
spectrum. It is thus the inverse of the relation obtained at the end of the previous
section. The expression above is not suited to numerical computations, however.
due to the singularity of the cotangent functions at w = 0. Presumably it may •
be simplified using principal value techniques by analogy to the continuous time
situation.

One could now go on to recover the g's from the 9's by an inverse double
transform. This provides a logically straightforward direct route from the desired ,
bispectrum to the model coefficients. Numerically, however, it is simpler merely
to compute C3 via the double transform and then apply equation (3-6.5). The
indirect route presented first is just an attempt to explicitly account for the
symmetries of the bispectrum after doing the double transform.

3-7 The Universal Bispectrum Model in the Frequency Domain is as S
Simple as it Can Possibly Be. %

The preceding sections have formulated the universal bispectrum model
in the time domain (3.1), computed its time domain properties, first (3.2) and
second (3.3) order cumulants, and then transformed these quantities into the •
frequency domain to find its power spectrum (3.4) and its bispectrum (3.5). An
alternate technique is to formulate the model in the frequency domain and then
to compute its power spectrum and its bispectrum directly. This approach will
be taken in the present section. Here the "frequency coupling coefficients" take
a more central role.

Start with the time domain version of the model, equation (3-1.2):

X(t) = C(t) + 77(t) + g(mn)c(t - m)r7(t - m - n). (3-7.1)
re.n--0 ' ' ''

Express x, c, iq in terms of their Fourier components:

X(t) = i(w) e"td, (3-7.2). . ..

2~7r

.
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Figure 3-2 INTEGRATION LIMITS BEFORE CHANGE OF VARIABLES.

(with similar expressions for i and i).
Therefore,

-(w) dctdw = ( () e'tdy + i (w) e' t dw (3-7.3) %

+ g (m, n)-]() e t nd.i(i) eiv(tn-n)dv. ) V>

'nf71=0

Continuing, one gets _ •

[i(,) - Z(w) - (W)] e'" tdw = g(m, n) (3-7.4) %
2rm.n0o

f, f :()4. •

Now is a good time to change variables from p, v to y= + v, P. The
Jacobian of this transformation is one (1), conveniently!. What about integration --
limits'? The original region of integration in the u, v plane can be chosen as the
square shown in Figure 3-2.

The new region is then the rhombus (Figure 3-3). 1

Z P

t ]4
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Figure 3-3 INTEGRATION LIMITS AFTER CHANGE OF VARIABLES.

Continuing,

f f[ ( ) - (W) - (w)]j e =wdw

f f a(w - v)ii(v) _ g(rn, n) e ) e idvdw. (3-7.5)
2vm.n=O 

m

So ore is led to re-introduce the frequency coupling coefficients

(w, v)= 1 g(m, n)e - '(wm+" n). (3-7.6)

Therefore,

[i:(w) - (w) - (w)j e idw = ! J (w, v) (w - v)(v) e"i'dvdw. (3-7.7)

Further,

J[ Z(w) - () - f7(w)] eC''dw , V)(W - v)i)(v) e"'didw. (3-7.8)

Currently the integration domain is the rhombus. This can be replaced •

with the more convenient (original) square in the w,v plane by the following
argument. Consider the triangular segment of the domain shown in Figure 3-4.

. , -

%
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X 2n

Figure 3-4 MIGRATING TRIANGULAR PIECE (BEFORE MIGRATION). 4

This piece contributes%

Jf (w, v)i(w - V) (V) e"'dvdw. (3-7.9)

Now change variables: v --+ v, w -* w = wu - 27r. One gets Z Z.

6(w' + 27r, v)i(w,' + 27r - v) (t') ei I+1)dvdwIl. (3-7.10)

Using ~*

v)= 4(w ± 2r, v) (w, v 2r)

W)= (o± 21r), (3-7.11)

this becomes

I (W 'Ri~ - V) (V) ezw'fdvdw. (3-7.12)

The triangle R, has been moved over to become the triangle R', showvn

in Figure 3-5. In this fashion the region of integration can be restored to the

original square.

The frequency dlomnain equation becomes

J~~x(W) -1, W( - jw]cVIw= ~ wt)i(w - wivctdi} ciwtdw,

(3-7-13)

% 0
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Figure 3-5 MIGRATING TRIANGULAR PIECE (AFTER MIGRATION).

so that the model is

7r

= (w) + (w) + / 4(w,u)a(w- v)/(v)dv. (3-7.14) 5

Equivalently, in Cram&r notation (described more fully in the next sec-
tion),

d (w) = d1(w) + d (w) + (w, v)d (w - v)d (v). (3-7.15)

3-8 The Bispectrum Can Be Computed Directly in the Frequency S
Domain.

It is now a simple calculation to get the bispectrum directly. (The calcu-
lation of the power spectrum is left as "an exercise for the reader".) Cram6r nota-
tion makes the calculation much less messy. MacDonald's paper (1.4-2] presents
a good discussion of the physical interpretation of the Cram& representation.

Let x(t) be a real, stationary, discrete time stochastic time series. Then

0

i9 b:% . 2,

V
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its Cram&r representation is

Useful properties are

d. (-w) = di(w)

and (di(wj)d5i(W2)) = b'(wj + W2 )f 2 (Wj)dwIdw 2  (3-8.2)

where C2(T) =Lf e(~if 2(w)dw.
-2w

For the independent Gaussian inputs (innovations), one finds

(d (wj)dZ(W2)) = 0'261(W, + wJ2 )dW~dwI2 ,

(d (Lv1 )d (wI2)) = 0' 2b'(LO + W2)dwidw2,

(&a(Lojd,(L02)) = 0. (3-8.3)

Here we use the notation b'(x) =_ E (x+27rk). This is the 27r periodic
k=-oo

extension of the Dirac delta function that Brillinger calls the "Dirac comb" and
denotes ij(x).

MacDonald presents the following formula for the bispectrum using the
Cram&r representation:

B(fi,f 2 ) df, df2 6(f1 ,f 2 ,f 3 ) = Ejd. (fj),di(f 2),di(f3)}. (3-8.4)

This formula must be put in terms of radian frequency w as opposed
to angular frequency f. This means one must distinguish between the function
diif(f) and di,(w). The previous d.'s are actually dix's. The Cram&r represen-
tation for x in terms of angular frequency is

x(t) I J et ' dir(f. (3-8.5)
2

and this implies that (w =27rf)

d, f (f) di (w). (3-8.6)%

Further, for all positive a

b(ax) 6(x). (3-8.7)
a

*V %
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Using these results, MacDonald's en'";Ltion becomes

B(wI, W2 ) dw, dW2 (W1, W2 , W3 ) = 2irEjdi(wj), di(W), di(W3 ). (3-8.8)

Thus one needs to compute

=(d(wj)diW2i(i) gwvd)w )(

1 2

[d(w) + d(w) + 27] (j v)(Lo - v) S~

[&(O +db(W2) + X-j iW2s, v)di(W2 -V)

=(lBiii + 2Aiii + 3Ai'i + 3Bi + lCii + 2Ci)

1 XW 3 , v")di(wi)dZ(W3 - v")dij(W2)di (v")
2- - 7rK

+ XiW 3 , i/')d&(L2)di(wI3 - v")dij(wi)di(v")

+ &(wj, v)da(W2)dZ(w 1 - v)dii(W3 )dij(v)

+ &(w1, v)di(W3 )d (wj - v)di(W2)d (v)

+ (w2, v')di(wj)dZ(W2 - v')di,(W3)di (v') ) (3-8.9)

There are six expectations above: the first one will be worked out fully,.

The remaining expectations involve nothing new.

(I. 3 J V") &(w1 1 e(W3 - v") ' W)d(

I (O3 v") (dZ(wj)dZ(W3 - V")) (db(w2)df.(v"))
27r
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= 2~f g( 3, V) (diL(wj)dZ(w 3 - Vi")) Orb'(w2 + v")dW2dv"

= -. u(), -LI 2) (di(wi)dG(03 + W2)) d 02

=T - (w3, -L02) b'(w1 + w2 + w3) dw~dw2dW3. (3-8.10)

Here w2 has been chosen such that -r < w2 < r. Due to the integration
limits only the 6' term shown in the fourth line above contributes. Further, the
final (fifth) line is a consequence of V(x),d 2X = 0. Substitute this result (and the
corresponding results for the remaining terms) into the complete equation to find 0 6

(d. (wl)di(w2)d. (w3)) =

0"/(27r) {(w 3, -W 2 ) + (w3 , -w 1 ) + (W, -W3)

+ (W, -W2 ) + (W2, -W 3 ) + (w2, -WI)}

6'(Wj + w2 + w3) dwLdw 2dw3. (3-8.11)

Comparing this expression with MacDonald's equation (in radian fre-
quency) one recovers the formula for the bispectrum in terms of the frequency
coupling coefficients

B(w,,w 2) = 0' 4 { (w3, -w 2) + &(w3, -wj) + (w1, -w 3)

+ (wL1,-wL2 ) + (w 2 ,-w 3) + (w 2,-wI) }. (3-8.12)

3-9 The Universal Bispectrum Model Might Arise in Practice, Al-
most.

The universal bispectrum model was written in Section 3-1 with little
in the way of motivation. The unfortunate truth is that the model was developed
on mathematical grounds and there is no k,.own physically realistic system to
which it might apply. This section shows Low the obvious attempts to construct ...

the universal bispectrum model come close but do not quite succeed.
One can write the general infinite-order moving average model as

x(t) = c(t) + E g(n)c(t - n), (3-9.1)

just as in Section 3.1.

%
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Here f(t) is a random variable (taken to be normally distributed, for
simplicity) and values of f at different times are statistically independent.

Next assume that the weights g(n) themselves are stochastic functions
of an independent time-dependent random variable 77:

g(m) = E bnm(t - n - m). (3-9.2)
m=O

Combining the above two equation gives

x(t) = :(t) + bnM7(t - n - m)c(t - n). (3-9.3)
nO rn=O

The above equation is almost the universal bispectrum model. There is a term r7(t)
missing. This flaw seems to afflict any effort to derive the universal bispectrum
model in a natural fashion. "Derivation" of the model in a natural fashion is
another opportunity for the reader!

It is possible to rewrite the model above in an equivalent auto-regressive
form. If equation (3-9.1) is written as

x(t) = E(t) + y a(n)x(t - n) (3-9.4)
n=O

with auto-regressive coefficients a(n) chosen to yield the same time series as given
by the g(n) and if c,,m are chosen to relate to the a(n) as the bnm relate to the
g(n) then equation (3-9.3) becomes

00 
00

x(t) = (t) + _ x(t - n) E Cr7,,(t - n - i). (3-9.5)n ---O m ----

This model suffers the same defect as (3-9.3), but perhaps may suggest a defect-
free model.

S
3-10 The Universal Bispectrum Model Can Be Clarified by a Dia- ,6

gram.

The primary concern of this chapter has been to determine how to com-
pute a time series which corresponds to a given bispectrum. A physicist might call
this the inverse problem or a statistician may call this the identification problem.
A specific model which makes the solution of this problem possible (and easy) % % I
has been introduced and termed the universal bispectrum model. One method

,. .:..
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Figure 3-6 COMMUTATIVE DIAGRAM FOR UNIVERSAL BISPECTRUM MODEL. .

of using this model is to desymmetrize the bispectrum to get its signature, b1,
double Fourier transform the signature to get h, then resymmetrize to get c3 , and
then desymmetrize to get g. The g's then tell one how to compute a time series.
A second method would reconstruct the 's from the original bispectrum, and
then double Fourier transform to get the g's and then get the time series. The
various relationships and possible pathways are summarized in Figure 3-6.

Now it remains to see how this works in practice! Chapter 4 will present
some necessary statistical tools and then Chapter 5 will present the model "under 0 .

fire"

*



CHAPTER 4

Estimation of the Bispectrum

4-1 At Least Four Techniques are Used To Estimate the Bispectrum.

Now it is time to consider how the bispectrum can be estimated from
sample data. Assume a discrete time series is somehow obtained. (If the model
is inherently discrete, then the bispectrum is estimated for the entire principal
domain. If the model is inherently continuous, then it should be anti-aliased 9
filtered before sampling (that is, all frequencies higher than twice the sampled
frequency should be removed) and it should be estimated only for the smaller
"support set" as given in Chapter 2.) In either case, there are four techniques
which are in common use for estimating the bispectrum.

The first technique, due to T. Subba Rao and M. Gabr [4-3] involves coln- S
puting the triple correlation, smoothing it appropriately, and then transforming %
it to get the bispectrum. This is the natural approach based on the Section 1.2
definition of the bispectrum. The Gabr-Rao technique is documetWd in their
book and will not be discussed further in this report.

The second technique is due to P. Huber and his co-authors [4-1]. Ac-
tually there are several variations in technique here, but the essential idea is to
estimate the Fourier transform of the time series and then find the expectation
of products of the transforms. This is the natural way to employ the definition
of the bispectrum presented in Section 1.3.

The third technique is due to M. Hinich [4-8.1] and is closely related S
to that of P. Huber. The primary difference is that the averaging involved in
estimating the Fourier transform and the subsequent averaging of these estimates
to compute the bispectrum are distinct, in the luber approach and are performed
together in the Ilinich approach.

The fourth technique is very recent. It is due to M. Raghuveer [4-2] who S
claims it has much higher resolution than conventional methods (i.e.. techniques
1-3 above) especially when used on short data sequences. The technique involves

42
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assuming an underlying model for the process, estimating the parameters which
characterize this model and then computing the bispectrum in terms of the esti-
mated parameters. A somewhat odd feature of this technique is that two distinct
models are used, the parameters for the model used for the bispectrum being
distinct from those used to estimate the power spectrum. This technique will not
be further discussed in this report, but Raghuveer's paper is recommended, not
least for the bibliography which contains many recent applications of bispectral
techniques.

The remainder of this chapter is devoted to the Hinich technique for
estimating the bispectrum from sampled data. Particular attention is paid to
both the theoretical underpinnings of the result (the author has great difficulty
in using a formula without any idea of its origin) and its use in practice.

4-2 One Must Distinguish the Sample Fourier Transform from the
Quantity it Estimates - the Population Fourier Transform.

Before tackling the bispectrum, it is wise to consider a much simpler
problem. In this post-FFT era, it is simple to compute the (discrete) Fourier
transform of a given (discrete) time series. But what does this FFT tell one?
If the sampled time series is deterministic, then the computed FFT is the true
transform (aside from effects due to sampling interval and sample size). However,
if the sampled time series is stochastic, then the computed FFT is just an estimate
of the desired transform. If one were to take another sample one would get another
estimate. Still it seems likely (and is true) that the expected value of the FFT
estimate equals the true (or population) transform. What is surprising, however,
is that the FFT is not a consistent estimator of the population transform. That
is, no matter how long a time series one takes, the standard deviation of the
FFT estimate for a given frequency does not approacb zero (rather it remains
constant). In other words, one cannot get increasingly good estimates of the
population transform merely by increasing the sample size.

Estimating frequency domain quantities is therefore a more subtle mat-
ter than would appear at first sight. One must look at estimator asymptotic bias
(does the expected value of the estimator approach the population quantity as
sample size increases?) and consistency (does the estimator get better as one
progressively increases the sample size - i.e., in the limit, does the variance of the
estimator approach zero?). Moreover, one still has the concerns of the determin- . • 1

istic case: in particular, estimator range (the Nyquist frequency determines the
maximum frequency for which an estimate can be made) and especially resolution "
(how closely spaced in frequency cani one get, reliable estimates?).

Nv.
•p
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Ideally, one would like to have a procedure that, given tolerable bounds
on bias and estimator standard deviation and specified resolution and frequency
range, would specify the sampling parameters of the sampled time series (number
of sampled series k, number of values in a single sample N, Nyquist frequency
fN,, etc.). It may not be possible to physically attain the required sampling
parameters - computational limits or sensor limitations may intervene. In this
case, the procedure should provide some idea of what performance is possible.

The following sections derive an estimator which implements such a pro-
cedure - the Hinich estimator.

4-3 Fanfare for Brillinger's Formula. •

This section is devoted to an exposition of one formula. This formula (if
pressed) can answer virtually any question about the sampling properties of the
FFT and is the key result underlying the Hinich estimator.

Suppose x(t) is a discrete time, zero mean, stationary stochastic time __

series. The discrete Fourier transform (DFT) of x, denoted 2, is defined by _. _

N-I

i(wj)= x(n)exp[-iwjnl. (4-3.1)
n=O

The x is a sample quantity, an estimate of the true or population spec-
trum. Each i(wj) estimates the Fourier amplitude at wj = 2rj/N.

The statistical properties of the discrete Fourier transform estimate of the
frequency spectrum are spelled out in a formula due to Brillinger and Rosenblatt.
Brillinger presents this formula without emphasizing its usefulness. Here this
formula gets its due.

The formula is actually an infinite set of equations, one equation for
each number of sample quantities involved. On the left side of the formula is an
expectation of products involving at most n sample quantities. On the right side
is an expression involving the population quantities and the sample size N. It is
possible to use this set of equations to determine the expectation of virtually any
combination of DFT estimators (as will be seen shortly).

The left side expectation is the cumulant of n FFTs. Cumulants have NN
been mentioned occasionally throughout this report, but only now is it time to
take them seriously. Temporarily suffice it just to indicate a commonly used
notation for cumulants:

I X2, - ,n]. (4-3.2)

....
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The next two sections provide the necessary background. Using this
notation, Brillinger's formula [2-1] is

J[ ...... ,] = NA(w, + ... + w,)f,(w,... ,w_) + O(1). (4-3.3)

Here -i denotes &(w2), N is the sequence length, n is the number of individual
frequencies being looked at, A(x) is defined as

1 ifxmod 27r = 0 (434)A~x) = 0, otherwise(43)

and f,, is the population cumulant spectrum defined by

f .... ,Z)[x(t + u),...,x(t + un,)lexp[-i(wlu + + w,-un-)],
Ui

(4-3.5)
where the summation is over all integral values of the {ui} and is independent of
t by the assumption of stationarity.'

Equations (4-3.3) and (4-3.5) are simplified and less general versions of S
those presented in Brillinger. A factor of 27r'-' has been removed from equation
(4-3.3) and this removes a corresponding factor from equation (4-3.5), which now
provides the usual definitions of the population spectrum and bispectrum for
n = l and n = 2, respectively.

Basically Brillinger's formula states that, asymptotically (i.e., as N tends
to infinity), the cumulant of the transform is the transform of the cumulant. This
is not surprising: the bispectrum is initially defined as the transform of a cumulant
(Section 1.2) but it is also equal to the cumulant of the transforms (Section 1.3).
Thus one should expect that, asymptotically, the same relation will be true of the
sampled quantities.

In the following sections, the kty to applying Brillinger's formula is to i
bear in mind the distinction between population and sampled quantities, and for . .
the latter to pay attention to the highest power of N that appears. Hopefully, this
fact shall soon become clear.

(Note also that essentially the same simplified version of Brillinger's for- * S
nmula has been presented (and proved) in a readable paper by Kim and Powers.
[4.3-1])

'The O(f(N)) notation is standard and means that terms of order f(N) or lower may be
present. but have not been explicitly displayed. In this case, this notation means that constants
(terms independent of N) or terms that vary as an inverse power of N (i.e., terms which become
smaller as N grows) are not, explicitly shown. Nonetheless, for large N, fhe only important t,,rrn
is the one shown.

- "
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4-4 A Diversion: Cumulants are Simply Expectations with Lower-
Order Dependence Removed.

Treatment of cumulants has been postponed to this section because it
is somewhat intricate and was not necessary until now. Further, the author
hopes that the reader has become convinced of the importance of cumulants
sufficiently to tolerate this section and the next. However, even here the precise
general definition will not be given. Rather the remainder of this section will be
pulled primarily from Doo Whan Choi's Ph.D. dissertation [4.4-1] which gives a
particularly intuitive treatment of cumulants.

Cumulants are essentially expectations with lower order statistical de-
pendence removed. If one wants the cumulant of n random variables, one con- 6
structs the expectation of the product of all n variables and then adds terms so
that the net result will vanish if any subset of the variables is independent of any
other subset.

For n = 2, this shows immediately that

[x,x 2] = (X1X2) - (X1)(X2), (4-4.1)

since here one starts with the expectation (XIX2) and it is clear that the right-hand
side of equation (4-4.1) vanishes if xi and X2 are independent.

For n = 3, one would then start with

[X 1,X2, X1] = (XIx2X3) - (X )(X2) (X3) - other terms (4-4.2) *.,

which vanishes if X1,X2, and X3 are mutually independent. But suppose, following
Choi, that only X3 is independent of x1 and X2 and that xi and X2 are not
independent. Then the right-hand side of equation (4-4.2) (neglecting the otherterms) becomes

(X112)(X3) - (X1)(X2)(X3) = [XI,X 2 ](X 3 ). (4-4.3)

Thus the term (4-4.3) must be included in the other stuff as well as the
terms one gets by interchange of 3 with 1 and 3 with 2. The final definition of
the cumulant of third order is

S

- [Xh1X2](X3)

One can see that this procedure may rapidly become c,,nibersomje for
larger u and that explicit rules are needed to efficienily compute tiese higher-
order cuimuilants. However, these rules themselves are fairly Comllicated and the
interested reader is referred to the references. I

S

6



The remainder of this section is for the more knowledgeable or curious
reader. Notice from the above equation that for the zero mean case the third-order-4N
moment and the third-order cumulant are the same. It is usually emphasized that
the bispectrum is the Fourier transform of the cumulant rather than the moment,
in spite of the fact that these quantities are equal.

If one views the bispectrum as the first in a sequence of higher order
polyspectra, grounds for this distinction do emerge. In the higher order case,
where cumulants and moments are distinct quantities, there are two reasons for
choosing cumulants over moments.

First, cumulants have better independence properties than moments.
Moments contain information about lower order moments, whereas cumulants
are constructed in such a way that each order cumulant has the dependence on
lower order ones removed. For example, it is meaningful to set all cumulants
above the second order to zero (and thus get a Gaussian process), whereas it is
impossible to set all moments above any specific order to zero. (It is true that
these higher order moments contain no additional information and need not be
specified for a Gaussian process, but they are not zero - that is just the point.
Incidentally, there is a theorem which states that any non-Gaussian process has an_.
infinite number of nonvanishing cumulants. Thus if the bispectrum of a particular
process is non-zero, it must be true that some higher order polyspectra are also
non-zero.)

Second, Brillinger has shown that for a commonly encountered class
of processes, Fourier transforms of cumulants are better behaved than Fourier
transforms of moments. He first shows that, if the moments and the cumulants -
are distinct, then either but not both of the corresponding transforms can be
mathematically well-behaved (in the sense of being proper functions rather than
requiring Dirac delta functions). Next he shows that for ergodic processes, the
transforms of cumulants are proper functions and therefore transforms of mo-
ments must involve delta functions. (For an ergodic process the time average of
any quantity for a single representative sequence equals the average of the same
quantity at a fixed time but taken over all members of the ensemble. In effect,
any representative sequence (or, realization) of an ergodic time series eventually
explores the entire range of behavior typical of its ensemble. Moreover, ergodic
processes are common both in theory - because it is convenient to be able to , P
interchange ensemble and time averages - as well as in practice - because the
"range of possible behavior" in typical ensembles is typically connected so that
any one series will do anything possible for its entire class.)

h NP N%
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4-5 Everything We Need To Know: Table of Zero Mean Cumulants

There are many rather complicated formulae or sets of rules for evalu-
ating cumulants of arbitrary order. For present purposes it is simpler to merely
tabulate the cumulants that shall be used and refer the reader elsewhere for the
general rules. The ones that shall be used in the following sections are those of
orders less than or equal to six and for random variables with zero expectation.
The notation used below is as follows. Rectangular brackets enclose cumulants;
angular brackets enclose expectations. The braces with subscripted numbers are
to be interpreted as instructions to replace the enclosed term with the sum of all
distinct terms obtainable from the enclosed term by permutation of indices. The
subscript outside the brace denotes how many terms should be obtained. (This S
notation is similar to that used by Dr. Choi in his dissertation, but it is not quite
the same.)

[xI] 0

£2, X31 (x Ix23)

£x1 2, £3, X-4] (XIX2X3X4) 1 12X341

£XI 2, £3, £4, X51 (X1£ 2 X£3 X4 X5 ) - {(X1X2X3)(£4X5)} 0

£X1 2, £3, X4, X5, X61] (X1£2X3X4X£s£6) - {(£I£2X3X4)(X5X6) I .

+ 2{(X1X2)(£3X4)(£sXo)}

4-6 The Practice: Previous Results Allow One To Estimate the Power
Spectrum.

The foregoing sections will now be put to good use. In this section, the e
statistics (expectation and variance) of the usual estimate for the power spectrurin
will be studied. In particular, the DFT will be shown to be an bconsiStent
estimator of the population spectrum. However, the main purpose of this section
is to provide practice for the following section which applies the same techniques to
the study of the statistical properties of the Hinich estimator for the bispectrum.

(Note that neither this section nor the following section actually carries
through the analysis to the end, i.e., practical estimation of the spectrum and
bispectrum. These sections are intended to provide only an unrderstand irig of the
basic results underlying the practical techniques. Also note ti at. all ti ire series
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shall be assumed to be zero mean so that the cumulants in the preceding table
will be applicable.)

Define the "periodogram" estimator by

P,(w)= (w)5(w) _ (w)(-W1 ) (4-6.1)
N N

It is more convenient to study the more general quantity

N

The expectation of El is given by

(E ( ) (I( )( ) _1 [1( 1), i(W2 )] ,(4-6.3)N N

where the second equality follows from the cumulant table.
By Brillinger's formula, this is

(EI(wj,w2 )) = A(W 1,w 2 )f 2 (w1 ) + O(N') (4-6.4)

so that, asymptotically,

(PI(w,)) = (E,(w,, -w,)) =f2(wj) (4-6.5)

and examination of (4-3.3) shows that f2 is the population spectrum so that P.
is an unbiased estimator of the population spectrum. For future use, note that
equation (4-6.3) indicates that

W Iw L 2 -- * (E I(w1,w) LOA=0(N') (4-6.6)

and therefore estimates of amplitudes at different freqaiencies are asymptotically
independent. e

Next, the variance of the periodogram estimator is desired. One wants
0

((P (,(w,) - f2(W,))2 = ((P (L,,))2) - f(w,). (.--6.7)
2 .i- % "

Tile expectat ion of P1 is

P2 = ((p (W ))2) (1 ((.i/(N 2).i(-)'( -)). (4 6.8)

which is contained inI flh ctuniiiatt,

% 0 %(ii n i i ( I t N%,%
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where

ij=x (W,) , i2 = i( 1 )

i= , x 4 = i(-wl). (4-6.10)

From the cumulant table

C4= P 2 - {1x2x2a34)I3, (4-6.11)

where the 1/N 2 times the symmetrized sum in (4-6.11) is

(4 6.12)

Keeping only the highest order terms in N gives

(2/N 2 )  (4(tk( wt} w) ( w),,--6.13)

so that
C4 = P 2 - (2/N 2) (((w,)5(-w)(5(w,)5(-w,)). 4-6.14)

The A function is automatically one since wI + w2 + w3 + w4 = 0, so

Brillinger's formula gives

f 3 (wC,wt,-w 1 ) + O(N_ 2). (4-6.15)

Therefore

((p i(w,))2) - f22(w) = (f 2 (w,))2

+(I/N) f 3 (wi,wi, -w,) + O(N - 2 ) (4-6.16)
S

and, as N -- o,
((P I(W)) 2) _ f2(LO f f(Wj). (4 -6.17)

The right-hand side, being a population quantity, is independent of N,
proving that the variance does not vanish asymptotically and that the "peri-
odogram" estimator is not consistent. This result explains why smoothing and P

other techniques are required to estimate the spectrum.

V. * ,

S
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A small diversion is now in order. Typically, the bispectrum is not
presented raw; rather it is normalized. The normalized version is usually called
the bicoherence. Powers defines the normalized bispectrum by

b 2(WI, W2) jB(wl, W2)I1 4-.8
ki(W)I2) (Ii(Wi)i(W 2) 12) .(-.8

This definition of bicoherence has the property that b is confined to range
between 0 and 1 and is very nicely interpreted as the fraction of the total power
at w which is due to the coupling. (This result is easy to derive: write down b2/P

and just substitute for these quantities using the formulae above.)
Power's definition of the bicoherence is not the only one possible: in fact,

the bicoherence is more commonly defined by

P(wIW2 ) = (4-6.19)
I( I(LO) 12) (1 I(,I) ) I2) 12)

If the ;'s were population quantities rather than sample quantities, then the "
two definitions would be equivalent (the joint expectation in Power's definition rwould factorize as shown earlier). In general, there should not be much difference

between the normalizations. However, the problem of choosing between them
still remains. There is little discussion in the literature on this topic. The bulk
of the statistical literature chooses the second form without much in the way of _0

explanation. The author's preference is for Power's definition because it possesses
the properties above.

4-7 The Payoff: Previous Results Allow One To Estimate the Bi-
spectrum.

The same type of argument can be used to derive the statistical proper-

ties of the Hinich estimator. This derivation in this section does not seem to have
been published previously, however. Define the "raw bispectral" estimator by

F ( W o , , 2 ) = ( 1 1I N ) ( 4 k a '2 2 w ) ( , -7 .1 )- , : : ' ,

where w, + W2 + W3 = 0 and, for simplicity, wjx and w2 are taken to lic In the
interior of the isosceles triangular subset of the principal domain. One now wants
the expectation and variance of this estimator.

By analogy to Section 4.6. the expectation of F is obtained by relating
it to a third order cunitilant an( then u';ing lBrillinger's formula to ewaiat e this

U
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cumulant.

(F(w,, w 2 )) = N
N-4 [ N,) 2), i(W3)]

N

= f 3(w1 ,w 2) + O(N-'), (4-7.2) ....

where the second equality follows from the cumulant table.
Next, the variance of the raw estimator is desired. One wants

((F(wj,w 2 ) - f3 (wj, w 2))2 ) = ((F(w,w 2 )) 2 ) - f2(w,w 2 ). (4-7.3)

The expectation of F2 is

((F(wi, W2))2) = (1/N 2 ) ) (4-7.4)

which is contained in the cumulant

c6 = [ ,, 2, , 4, , 6 , (4-7.5)

where

= - (W2), x5  -= -02 ,
i3= 5 (w3), - 6 = i(-w 3 ). (4-7.6)

From the cumulant table and Brillinger's formula,

C = (1/N 2) [aj+a 2 +a 3 +a 4]
= (1/N) f 6 (wlW 2 ,W 3 ,W 4 ,Wh) + O(N- 2 ), (4-7.7)

where

a I = (iI245O= (I. 1 ki 2 2 P3I12)
a2  = 2 i 3 4 6) 1 1
a3 = P i)1

a 4  = -(, 2) (4 4) (4i6)}t1. (4-7.8)

The above exprcssicns can be simplified by keeping only the highest
order terms in N. One knows that the highest, order contribution comes from

&?" ,
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those expectations with frequencies that sum to zero. Moreover the assumption
that w, and w2 lie inside the isosceles triangular subset of the fundamental domain
implies that W 1, W2, and w3 are mutually unequal so that "coincidental" equalities
are absent. One finds

a, = (1,2,1i 2 121 3 12)
a2 = -[li 1 i2 I 2 P3 12 ) + (Pi2 12 ) (Li 1 12 1-3 12)

+ (0I312)(i I2IP212)]

a3 = -;2i3)1
2

a4 = 2(f1 ji,2)(ji: 212)(I 3 12). (4-7.9)

Examination of a I and a3 validates the earlier claim that the expectation S
of F2 is contained within the cumulant. In fact, the entire desired variance in C.
equation (4-7.3) is just (a, + a3 )/N 2 so that combining equations (4-7.6), (4-7.7),
and (4-7.9) gives

1 1-2).

((F(w , W)) 2 ) - ("2) N -- [aN2  + a4 + 6(w 2,w 03 L0, W5 ) + 0(N-).
(4-7.10)

The asymptotic behaviors of a2 and a4 are easily shown to be

a2 = 2N 3 f 2(w,)f 2(w2 )f2 (w3 ) + O(N2 )

a4 = -3N 3 f 2(wi)f 2(w2)f2 (w3 ) + O(N 2), (4-7.11) , 0

so that equation (4-7.10) simplifies to

((F(w1 ,w 2 )) 2) - f2(wI,w2) = Nf 2(wj)f 2(w2)f 2(w3) + 0(1). (4-7.12)

This result is the key result which underlies the Hinich estimator and
is equivalent to equation 2.5 of Hinich under the simplifying assumptions made
here. (To get the complete result, it is only necessary to allow w, and L' 2 to be
arbitrary and then include the "coincidental" equalities which occur in evaluating
the cumulants in (4-7.7).) N

* S

4-8 The Mathematical Results Can Be Turned into a Practical Pro-
cedure for Estimating the Bispectrum. : ,,%

The previous section has shown that F(w1,W2) is an unbiased but not
consistent estimate of the bispectrum. It does not consistently estimate the bi-
spectrum because its variance does not approach zero. In fact, by equation (4-
7.12), the variance actually increases with N. In this section I(w,,v) will be .:%

,* %
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turned into a practical (consistent) estimator. Unlike the earlier sections, the
mathematics will be stated and not proved. This is due not to increased com-
plexity, but to the lesser relevance of the mathematics for present purposes.

For simplicity of notation, F(wj, wk) will be denoted F(j, k).
To obtain a consistent estimate, the F(j, k) is averaged over adjacent

values in a square of M2 points centered at the points
(g,,g.) = ((2m-1M-1 (2n - 1)M -1)

22
= where m = 1,..., [N/(2M) + 0.51

= and n = 1,..., min(m, [N/M - 2m + 3/2 + 3/(2M)]),4-8.1)

where M is determined by trading off resolution versus bias (as shall be seen
below) and [] denotes the "greatest integer not exceeding" function.

The values of m and n above are constrained so that the center points
are within the principal domain. The constraints on m and n are derived from
the principal domain constraints on the set of (j, k):

0 < j _ N/2,0 < k < j,2j + k < N. (4-8.2)

If not all points within the square are within the principal domain, only
those points within the principal domain are included in the average. Thus the _
bispectrum estimator is given by

mM-I nM-I

B(m,n) = M - 2  E E F(j, k), (4-8.3)
j(m-1)M k=(n-I)M

subject to the constraints in equation (4-8.2).
If the bispectrum is slowly varying over the square, then this estimator

is unbiased:
(B(m, n)) = B(fm, fq.) + O(M/N). (4-8.4)

If the power spectrum is slowly varying over the band of width M cen-
tered at the appropriate frequencies, then the variance of this estimator is given
by

Var 3(rn, n) = NM-Q(m,n)f 2(q)f 2 (fq,,)f 2 (f9, + fq,) + O(M/N), (4--8.5)

where Q(m, n) = M2 if the square is entirely within the principal domain; other-

Wo
wise it is equal to the number of p)oints(j k) within the square but u10t on theV

| . J.. .-'4 -N'



boundaries j = k or 2' + k = N plus twice the number of points (j, k) on the
boundaries.

From equation (4-8.5) it can be seen that the estimator given by equation
(4-8.3) is a consistent estimator for values of M given by

V_ < M < N. (4-8.6)

The bias increases and the variance decreases as M increases. If the
time series is divided into L segments, each of length N, and the bispectrum is
estimated for each segment and all L estimates are averaged together, then if
each of the L bispectrum estimates is uncorrelated, the variance of this coherent
average is just

Var BL(n, n) = Var B(m, n)/L. (4-8.7)

In this case, consistency is obtained for values of M given by

N/L < M < NL. (4-8.8)

The asymptotic distribution of the estimator given by equation (4-8.3) is
complex normal and independent for each frequency pair. Thus the distribution
of the random variable 2

X (m, n) = m,4-8.9x2 (m,n)=Var B(m,n) (4-8.9)

is noncentral chi-square with two degrees of freedom and noncentrality parameter

A~m n)2 (,1If n ) (4-8.10)(mnn) = NM_ 4Q(m,n)( )4

where
I (m, n) 12

"Y(fgm, fzi) = f 2(f4q)f 2 (fgq)f 2 (f4m + f,)(

is called the skewness function. An estimate of the normalized bispectrum given in
equation (4-8.9) can be obtained by using an estimate of the power spectrum in the
expression for the variance. If the periodogram estimator for the power spectrum
is used and it is smoothed over a band of at least NM adjacent values, then this
estimate of the normalized bispectrum will also be noncentral \2 distributed with
two degrees of freedom and the same noncentrality parameter. If the bispectrum
is coherently averaged over L segments, then the distribution of the normalized
bispectrum after averaging is noncentral chi-square with 2 degrees of freedom "a, ,
and noncentrality parameter LA(m, n). If, on the other hand, the hispectrum

* .
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is normalized as in equation (4-6.19) and the normalized bispectrum is averaged
over L segments, then the distribution of this incoherent average is noncentral
chi-square with 2L degrees of freedom and noncentrality parameter LA(m,n).

If the original time series is a linear process then it has constant skewness
function. If it is a Gaussian process, the constant value is zero. Thus for a

Gaussian process the asymptotic distribution of the estimator of the normalized
bispectrum is a central chi-square with two degrees of freedom. This allows the
values of the normalized bispectrum estimator to be thresholded and compared

to values from a known distribution to determine when statistically significant
values of the bispectrum estimator are occurring, i.e., values large enough that
the assumptions of Gaussianity and or linearity can be rejected with some degree
of confidence. Specific tests for Gaussianity and linearity have been developed _
using this estimator.

4-9 The Practical Procedure Can Be Simplified To Give Order-of-
Magnitude Estimates.

In practice, the formulae given in the previous section can be simplified
even further. The estimator under consideration is obtained by starting with L
sequences of length N each. For each sequence, one first constructs F(j, k) and
then averages over squares with length M to get B. The estimator is obtained by
taking the average of B over all L sequences.

One finds that the estimator bias is approximately

M/(NL) (4-9.1)

and the estimator standard deviation is

NIVN/Lf 2 ,2. (4-9.2)

4-10 Estimating the Bispectrum Requires Smoothing.
S

In a nutshell, this chapter has shown that just as periodogram estimates-.N
need to be averaged to get a consistent power spectrum estimate, so must the
raw bispectral estimates be similarly averaged. Moreover, a particular method
for doing this averaging, the Hinich procedure, has been studied. The flinich'
procedure averages adjacent raw bispectral estimates. It is also possible to average
in the time domain to get, a smoothed bicorrelation function and then transform.
The results presented have been based on a formula by Brillinger which states
that the transform of a cimulant is the citniiilant of thle transforns.

I%
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This chapter begins the treatment of practical issues which are needed to
successfully apply the bispectrum. The following chapter extends this treatment 0
to a worked example.

I i
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CHAPTER 5

The Model in Practice

5-1 A Simple Example is Given by Choosing the Bispectrum Con-
stant in a Specified Rectangular Region and Zero Elsewhere.

A simple example of a non-trivial bispectrum is one in which the bi-
spectrum is zero except for a rectangular region where it is constant. The rect-i0
angular region is centered at ,\ 1,A2 and its sides are parallel to the frequency axes
with length 2AA1 in the Lo, direction and length 2AA2 in the w 2 direction. The
magnitude of the bispectrum shall be denoted b and the bispectrum will be taken
to have zero imaginary part. (See Figure 5.1.)

The complete bispectrum for this example, defined for the entire w 1 , 2

plane, has numerous symmetries that have been presented in Chapter 2. These
symmetries can be handled by the methods of Chapter 3. Here it suffices to
compute the double Fourier transform of the function which looks exactly like
that shown in Figure 5.1 and possesses none of the additional symmetries except
for the 2ir periodicity in w and w2 and the conjugation symmetry.

This double Fourier transform is defined by, .

h(r,s) = 1-2 Jf(JLV,W2)exp[i(rw, + si0)JdwtdW2, (5-1.1)

where the integration limits are -ir to 7r and - S
h(Wj,W 2) =b{ S(w1 ; A,,z A)S(W2; A2, AA 2) + S(w1I; A,, -\A 1I)S(W 2; -A 2 , ZAA 2)1

represents the rectangle function. (The second addend provides conjugation sym-
metry and is included to ensure reality of the double transform.) The function S
is defined by

1 for a-b < x< a+b
S(x;a;0b) = 0 otherwise (-3

58
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The Fourier transform in equation (5-1.1) is easy to evaluate. One has

h(rs) T explirwildw] exp[isw2 ]dw; 2} + c.c., (5-1.4)
-r1\ AA1  A2 - A2

where c.c. denotes the complex conjugate. Or, explicity,

AAA =r=sO0 K

h (r, s)= 2 AAcos(sA2)sin(sZ\A 2)/S r r=s, s 54 0
T2 AA2cos(rA,)sin(rAA)/r r 5 0, s = 0

I cos(rA, + sA2)sin(rAAj)sin(sAA 2)/(rs) ; r, s : 0

(5-1.5) 6

If the rectangular region is restricted to lie entirely within the isosceles
triangular subset of the fundamental domain, then the methods of Chapter 3 can
be used to get the time domain correlation function c3 ,

c3(r, s) = h(r,s)+h(s, r)+h(r-s, -s)+h(s -r, -r) +h(-s, r- s)+ h(-r, s -r).
(5-1.6)

From this c3 one can determine the corresponding time domain coeffi-
cients g using equation (3-3.1) in reverse. Notice that g(r, s) will be non-zero .'.'
for arbitrarily large r and s. In the computer implementation, g(r, s) will be o,

truncated to zero past certain bounds R and S. This truncation will introduce a
"ringing" effect, which is familiar from Fourier theory and which can be alleviated ..

by using windowing techniques. However, that level of sophistication will not be
needed here.

Thus one may produce the rectangularly shaped bispectrum with the
discrete time series model below:

x(t) = e(t) + 77(t) + _ g(m, n)c(t - m)ri(t - m - n), (5-1.7)

n0O

with g's computed using equation (5-1.6), h's given by equation (5-1.5). and
,q(t) and c(t) independent zero-mean Gaussian random variables with standard
deviation a. Next, it is necessary to test the model.

5-2 Computer Simulations Give Good Agreement with the Model.

Testing the preceding model involves assembling a good deal of software.
Moreover, any difficulties that may arise may be attributable either to inadequa-
cies of the software or to mistakes in the mathematical development. To ensure

, . -1o
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1 Z

Figure 5-2 THE "PREDICTED" BICORRELATIONS. (TEST MODEL)

that such was not the case, a very simple model was picked to start with. This.%
model is defined by letting o = 0.8 and taking only a small number of g's to be
nonzero:

.4 .7 -. 2

g= .6 -. 5 .3 (5-2.l)
-. 3 .1 4 _

These numbers were chosen more or less at random. Then 2000 time
series of 128 points were generated from equation (3-1.2) using these parameter
values. The g values are related very directly to the bicorrelations as shown in
equation (3-3.4) so that the model's predicted bicorrelations are essentially an
echo of the g's. This is shown in Figure 5-2.

Given the model coefficients one can compute the predicted cor-
relations using equation (3-2.2), the predicted power spectrum using equation
(3-4.3). and the predicted bispectrum using equation (3-5.5). One may generate
the "observed" quantities as follows. From the generated time series, compute
the correlations and the bicorrelations directly from their definitions and then
Fourier transform these quantities to get the corresponding power spectrum and
bispectrum. (This method is not complitationallv efficient, but, it has the a(lan-

S. .. . . . . . .. .* . . .. . . .
-------------- k
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Figure 5-3 THE "OBSERVED" BiCORRELATIONS. (TEST MODEL)

tages of simplicity and of reliability when developing software from scratch.) If
everything is as it should be, the observed and the predicted quantities should be
in close agreement,r

These computations were done on a MicroVAX computer at Applied Re-
search Laboratories (ARL:UT). The software which generates the time series and

[ does the comparison of prediction versus observation is written in VAX Fortran
i ~and has been termed Bispectrum Workshop.
' The results of Bispectrum Workshop are shown in the following set of

figures. First, Figure 5-3 shows the observed bicorrelations. Ne-:t, side-by-side
comparisons of tihe correlations, power spectra, and bispectra are shown in Figures
5-4, 5-5, and 5-6, respectively. The visual agreement is very good is all cases,
and aln examination of the actual numbers (not presented here, but available from"-."-,
Workshop output) confirms the match. Note also that the 2a2 ternm in equation .:], &
(3-4.3) equals 1.28 whinch lies below, but near, the power spectrum curve as one /, ,.-
might expect. . '' -'

With this test suiccessfiully accomip]lied, it becornes desirable to try to
reproduice a given !bispectrm. A second program., Modlliaker, was written for""-%.0 ¢

' -'-,: '"'-

thi I upose. Rather than follow the analytical t rati nn in Section 5-1, this.--' "
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Figure 5-7 PREDICTED AND OBSERVED BisPECTRA. (SQUARE MODEL)

program takes a supplied continuous frequency bispectrum as input, samples it,

double Fourier transforms to get the bicorrelation, and then computes the g's from

the bicorrelations. These g's are output to a file which Workshop can read. (Note

that the g's are only determined if a is assumed known. ModelMaker arbitrarily

sets a = 1. The following section will consider this matter is more detail.)

Htere a model of the form shown in Figure 5-1 was used, with AI = 3/16.

A2 = 9/32, AAI = 5/128, and AA 2 = 15/128. In this case 5000 times series of 128

points were produced. However, the sampling was intentionally done very coarsely

just to show sampling effects. Samples were taken at frequencies fi = ir/32.

Side-by-side comparisons are shown in the following figures. First, notice

that the predicted bispectrum is not flat; thus one cannot fault the observed

bispectrurn, which is in good agreement with it. (Figure 5-7.)

The non-flatness of the bispectrun is shared by the power spectra. I lere,,_

however, the limiling 2(7 value is 2 and this value is actually approached quite

:.~'.,.-''''
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Figure 5-8 PREDICTED AND OBSERVED POWER SPECTRA. (SQUARE MODEL)

closely. (Figure 5-8.)

Finally, the predicted bicorrelations look much as one would expect for
this model, and the observed bicorrelations can be seen to agree well. (Figure
5-9.)

Thus, computer simulation verifies the mathematics presented here and
shows that this model car, 'e used to invert the bispectrum. This section con- .
cludes with a few remarks concerning parameter values.

5-3 Reasonable Parameter Values are Obtainable through a Comn-
bination of Mathematical, Statistical, and Practical Considera-
tions. CA

It is assumed that one wants to reproduce a given bispectrum with a
model of the form given in equation (3-1.2). It is further assumed that one will

'- -% 
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estimate the model bispectrum using the Hinich procedure described in Section
4. (The Hinich procedure is not used in the current implementation of Workshop 0 S
as described in the preceding section.) The given bispectrum determines the g's
up to a scale factor. (Were a known, this constraint would determine the scale
factor as well.)

The model and estimator parameters at one's disposal are

a, gscal, R, S, M, N, and L. (5-3.1)

First, notice that the given bispectrum can be double Fourier trans-
formed to get bicorrelations. These bicorrelations should be examined to see at
which lag they begin to decay. The values of R and of S should be chosen to S
exceed this decay lag. Then the value of N (the number of points in a time series)
should be chosen large with respect to R + S.

It is clear that in the present formulation, a and an overall scaling factor
gsca e can be traded off against one another to give a given bispectrum. This
ambiguity can be employed to one's advantage by choosing the a which yields 0
the smallest estimator variance for a given bispectrum.

A time consuming, but exact, method for doing this would start by
computing the variance of (4-8.5), using the expression for the power spectrum
given in Chapter 3. This gives the variance at each point in the domain. One
can now define some overall variance; e.g., average variance or perhaps variance
weighted by the importance of regions of interest, to give a single number. Then
one can vary a and determine which value minimizes this quantity. No N*

A simpler, but approximate, method would begin by approximating the
magnitude of the given bispectrum by some number B. Next, write the g's as

g(mn)= g '(Mln), (5-3.2)

where the g' are the g values which correspond to a 1 (and hence are fixed for
a given bispectrum). Now compute the quantity % %

000
Z j~A)J 2 (5-3.3)

71=0

and average it over A to get the value G. With these approximations one can
write the expression for the power spectrum as ,VN N

(7 2 2 + alg~jG 314f2 2 , 6- 11'

*. <
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Now a and g9le can be determined by minimizing f2 subject to the V
constraint that the bispectrum remain constant (or that a 4 gacale = B). When
one does this, one finds that

o = [B2G]'/ 6. (5-3.5)

(And, for completeness, one gets g,,,,, = B7/ 3G2/3.)

The values of M and of L can now be put into the simplified estimator
equations (4-9.1) and (4-9.2) to get adequately small bias and standard deviation.

r

5-4 The Model Works!

This chapter demonstrates that the universal bispectrum model can be
used to reproduce a desired bispectrum. The equations presented in the earlier
chapters have been shown to be consistent with computer simulations. Some
discussion of parameter values has been presented. The discussion as presented
here is still incomplete, however.

There are alternate routes to actually employing the model which have
not been discussed. The approach taken here is largely a time domain approach.
A corresponding frequency domain approach may have some advantages. This
frequency domain approach would derive the from the given bispectrum as
before, but then instead of going directly to the g's, the series would be computed
in the frequency domain using (3-7.14). If desired, this series could then be 0
transformed to get the time series. This approach is likely to be faster: it involves
only a one-dimensional integration rather than a two-dimensional summation, and
it is likely to be more accurate: agreement between prediction and observation
does not depend on Fourier-transforming random quantities.

Further, the model can be naturally extended to give some degree of
independent control of the power spectrum while retaining the capability of re-
producing an arbitrary bispectrum. One obvious way of doing this is to introduce
a third independent random Gaussian time series C(n) and add a moving average
contribution from this variable to the model (3-1.2). The new terms will not affect
the bispectrum but will contribute additively to the power spectrum. Moreover
this additional contribution to the power spectrum can be chosen at x, ill. (One is
stuck with at least as much power at each frequency as given by the un-adorned
model, but one can add power as desired to re-shape the power spectrum without
changing the bispectrum.) An alternative means of gaining this control is to add

il(m)c(n) terms for in > it. These terms were neglected in the current, formulation
because they spoil the identifiability of the model and they allow no additional
control of the bispectrum: 71)c(n) and ,;(n) (i)contribute additively to thc

0IS .'.VT"16
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bispectrum so that one term can do duty for both. But these two symmetric
terms do not contribute additively to the power spectrum. Therefore varying the
summands while keeping the sum constant will change the power spectrum but
not the bispectrum.

There are other interesting questions that should be explored. For ex-
ample, is there a minimum power spectrum model for a given bispectrum, and,
if so, is this model of the form of the universal bispectrum model? Can this
approach be extended to higher order spectra? What does the continuous time pP

formulation of this model look like? (In fact, the continuous time version will
be a stochastic integral rather than a stochastic summation.) The author will
concede that the the discussion of practical considerations given here needs to be
amplified considerably.

0
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CHAPTER 6

Summary

A

This report has attempted to provide an intuitive, uniform treatment
of the bispectrum. Numerous perspectives on the bispectrum were presented
with emphasis on physical and mathematical intuition. A limited catalog of
examples is presented in an appendix to the report. A universal model, capable
of generating any possible bispectrum, was worked out in both the time and
frequency domains. An example of its use was presented. Attention was given
to the symmetries, relationship between continuous and discrete time bispectra,
and the mathematics underlying the sampling properties. %

- 0. . 4 . -

7/2
0.,

% M*--
4%



APPENDIX A

Catalog of Examples
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A-1 Linear Non-Gaussian White Noise Passed through Linear Device

This model and the next two are taken from the paper by Huber, Kleiner,
Gasser, and Dumermuth [4-1]. Assume (Xi) = 0, (X?) 1, and (Xi) =

Define
Y _ h(i - j')Xj.(A .1

Then, if

h(t) 1j exp(27rizAt)H(A)dA, (A-1.2) .

one finds

f2(w) = IH(w)12  (A -1.3)
b(wj,w 2) = /H(wi)H(w 2)H*(wi +W2). (A-1.4)

A-2 Gaussian Noise Passed through Squarer.

Assume Xi is Gaussian with (Xi) = 0 and (X?) = 1 and spectral density
g(A). Pass this noise through a squarer:

SZj = Xj + cfXi (A-2.1)

where Zi is the output of the squarer, a is the amplitude of the squared part and
is numerically small.

The spectrum of Zi is

f2(A) = g(A) + 2a2 g(i)g(A - p)dp (A-2.2)

and the bispectrum of Zi is

f 3 (A1,A 2 ) = 2c{g(A1 )g(A 2)+g(AI)g(Ai+A 2)+g(A2)g(A,+A 2)}+a 3 terms and higher.
(A--2.3)

A-3 Poisson Activity _

Define .. ).
Zj h(t- Tk), (1 -3.1)

k

where tic T are Poisson-distributed tinies with '--'f?..

.% %

S" . , -

(ri+ - 7 )= ,. (x f.) , ..-. - -. ,
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Then, if

h(t) oe fexp(27riAt)H(A)dA, (A-3.3)

f 2 (w) = 1IH(w)12 
(A-3.4)

'I

and

b(I, W2 ) = flH(wi)H(w2)H*(wi + w2). (A-3.5)

These are tue same results as in Example 1 provided pL 1.

A-4 Interacting Sinusoids

Let

x(t) = S.(t) + Sb(t) + 2S,(t)Sb(t) + N(t), (A -4. 1)

where 9
Sa(t) = cos(Wot + €a)

S(t) = cos(Wbt + Ob). (A-4.2)
We find that

k is peaked at w,, wh, wa + wb, Wa wb (A-4.3)

and ,
h is peaked at (wa,w), (wa,wa - w). (A -4.4)

The bispectrum corresponding to this example is shown in Figure A-1.

A-5 Generalization of A-4, due to Powers.. %

Let y(t) be a time series and V I its Fourier transform. • 0
The power spectrum of y, as swiai. is

P(W) = (Y(w)Y*(W)) (A-5. 1)

arid the bispectruim is 0 0

B(wi, L"2) - (Y(u.,,)Y(..)1r*(w, + W2)). (A 5.2)

O* %

1 . .a.
•.'' -a

RJ'a%./m~ #a -%~~ j. .'V " d ".V" .P
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This model [1.5-2] has nonlinearity of the simple form

Y(w) AY(wj)Y(w 2 ) + Y'. (A-5.3) - -

Here Y' contributes to Y(wu) but is statistically independent of the cou-

pling term. A represents the coupling constant.
Computing the power spectrum at w, one gets

P(w) = 1A1(IY(wi,)Y(w2 )12 ) + (IY' 12). (A -5.4)

The bispectrum at W, W2 is

B(w,,w 2) = A*(IY(wl)Y(w 2) 2 ). (A-5.5)

A-6 A Realistic Evolution Equation, due to Powers.

Here a realistic evolution equation is assumed:

0x V¢,¢ex p (i'6kx) (A -6.1) .:: " -" °-

with frequency matching (w = wI+w 2), possible mismatch in wavenumber (charac-

terized by 6k = k; + k2 - k.), and wave-wave coupling (with coupling coefficient

It will be assumed that the above equation is true for some fixed W and S

that for the wave at this frequency w thlcr is one pair )f frequencies (w, and w2),"

'iat dominates the integral. In particular the frequency dependence of V can be
)rn!tted. %

In terms of the quantities of experimental interest, the above equation
becones ~ ~ y,-

O Y, + ik(w)Y( w). (A 6.2)

It is a simple exercise (left to the reader) to take the above equation and
d e r iv e O PLO.

0p( ') - 3(w1. .1 2 ) + V*B*(w, ) (.-.)

In terms of strictly real (jlantitjes 1'R, V,. Bit, and Il, where

21" =V Vq + il. and[ B_ Bit + IB/. (A 6.1)

This giveh' lie wonderfuil (,qiatiOn 0

4N
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A-7 A Stochastic Model of Gear Noises

This model is due to Sato and co-authors [Appendix-i] and applied to
diagnosing gear noises for signs of wear. The model as given is a continuous time
model. One has

x(t) a,,cos(2rnfot + 0,, + d,,) (\-7.1)

n=O

where a, are amplitudes of the various harmonics, , are deterministic phases,
and the d,, are random phases.

The power spectrum for this model is

P(f) = .a 2 6(f- nfo), (A -7.2) ,

where b denotes the Dirac delta function.
The bispectrum is

B(fl, f2) - Zfl., =_-cZ., o 1/8 a,,a,,,,t,,exp[i( ,,i + ot, + ¢r+,l)] S

(exp[i(d,,, + d,, + d7.+,,)])6(f, - m fo)6(f.2 - 7fo),"

(A 7.3)

so that one sees that the magnitude of the various terms is controlled by the
expectation of the random phases. In particular, if the random phases are absent,
then the expectation has its maximum value of one and the bispectrum shows N
the peaks most clearly.

A-8 Brillinger's Polyspectrum Example.

This is a continuous time example [Appendix-2] which comes near to
being a generalization of the universal bispectrum model. One takes %

Xt)= a(t - u)dI(u) + b(t - u, t - v)d1V(u)dW(?') (A-8. 1)

where IV(t) is a Wiener process, a has Fourier transform A. b is assumed sim-
metric ii its argumients and has double Fourier transform B. -,'S.

The bispectrumm of X(t) is

2[ A(.' )A(w.)1(-c.:) + A(.'.)A(.c )I(-W:,- -3)

+ A(.u)A(w) 1  . -' 1 )1 0
+ J .4,,g/), ,y,{. I?(w.. 1, - w.)I3(..' +j- w:.,.,/ - &,. . - - ,.%,=,,p. ,.. . .

(A S.2)
% N

%t*- .-
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and the notation AvgPerm{f(w,,w 2,w3 )} denotes taking the average of f evalu-
ated for all permutations of wI, w2, and w3.-

M
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